

2.5 - 7.5 GHz Tunable Filter Evaluation Board OTFL101-EVAL Datasheet

Features

- Evaluation board for the OTFL101 Ultra Linear 2.5 7.5 GHz Tunable Filter Evaluation Board
- Embedded microcontroller with Otava software GUI
- Header provided for external control
- TRL calibration structures included

Description

The OTFL101-EVAL is designed for the user to evaluate the performance of the OTFL101 2.5 – 7.5 GHz Tunable Filter. Please refer to the OTFL101 datasheet for full details on the filter.

Required External Equipment

- Network Analyzer
- USB-C Cable
- Windows PC
- Otava Software GUI (supplied)

Applications

- Aerospace & Defense
- Wireless Infrastructure
- Satellite Communication
- Instrumentation
- Automotive

OTFL101 Evaluation Board

Figure 1 – OTFL101-EVAL Evaluation Board

OTFL101 Block Diagram

Figure 2 – OTFL101 IC Block Diagram

Table of Contents

Revision History	2
Evaluation Board Overview	3
RF I/O Signals	3
Testing the Filter	4
Additional Information	7

List of Figures

List of Tables

Table 1 – RF Connector I/O	.3
Table 2 – J10 Control Header (Using Seeeduino)	.4
Table 3 – J10 Control Header (Bypassing Seeeduino)	.6
Table 4 – Bill of Materials, OTFL101-EVAL	.9

Revision History

August 2021, RevA (Initial Release)

Evaluation Board Overview

The evaluation board is shown above in Figure 1 – OTFL101-EVAL Evaluation Board. Compression mounted SMA connectors are utilized on the board for the two filter ports. The board includes a Seeeduino microcontroller to control the filter's bits. A header is provided in case the user wants to connect their own test equipment to control the filter, bypassing the Seeeduino. TRL calibration structures are provided on the bottom of the board (Thru, Line, and Short); connectors for these paths are not provided and must be purchased separately.

The board consists of 4 layers and is detailed below:

Figure 3 – OTFL101-EVAL PCB Stackup

The gerber files of the evaluation board are provided to assist the user in the implementation of the filter IC.

RF I/O Signals

The filter RF paths are routed on the top layer of the board. The TRL calibration paths are routed on the bottom layer. All RF lines are designed using a CPWG (coplanar waveguide) structure, with a trace width of 7 mil (tapered to 5mils going into the filter I/O pads) and ground spacing of 9.5 mil. All RF I/Os are 50Ω nominal.

Table 1 – RF Connector I/O

Connector	I/O	Description		
J1	RF1	Filter RF Port 1		
J2	RF2	Filter RF Port 2		
J3	Short P1	Short Calibration Port1		
J4	Short P2	Short Calibration Port2		
J5	Line P1	Transmission Line Port1		
J6	Line P2	Transmission Line Port2		
J7	Thru P1	Thru Line Port1		
J8	Thru P2	Thru Line Port2		

Testing the Filter

Below is a typical setup to measure the s-parameters of the filter:

Figure 4 – OTFL101-EVAL Filter Test Setup

Two ports of a network analyzer are used to measure the small signal response when connecting the VNA port 1 to the J1 connector, and VNA port 2 to the J2 connector of the evaluation board.

A USB-C cable is used to connect the Seeeduino (U1) to the test PC. The Seeeduino is then powered up from this connection. +3.3V is passed to the PCB from the Seeeduino (Pin12) and that is used to generate the required +1.8V (resistor divider formed from R5 and R6) and +2.5V (resistor divider formed from R9 and R10) power supplies for the filter.

The Seeeduino also generates the required digital signals to control the filter. The clock (pin 15), data (pin 17), and latch (pin 13) signals are routed to the control header, J10. Each of these signals go through a resistor

divider on the board which lowers the +3.3V logic level coming out of the Seeeduino to +1.8V for the tunable filter interface.

Five jumpers are utilized to short the pins of the Seeeduino control signals and PCB created voltages to the filter I/O. The board is provided with the jumpers in place. Refer to the table below for the jumper setup.

Table 2 – J10 Control Header (Using Seeeduino)

Pin	ı/o	Description	Jumper	
1	GND	Ground		
2	GND	Ground		
3	VDD_1	1.0\/		
4	VDD_1	1.8V	×	
5	GND	Ground		
6	GND	Ground		
7	VDD_2	2.51/		
8	VDD_2	2.5V	x	
9	GND	Ground		
10	GND	Ground		
11	GND	Ground		
12	GND	Ground		
13	A1	61.0		
14	A1_VD	SLA	×	
15	A8	sci	~	
16	A8_VD	JCL	×	
17	A10	SDA.		
18	A10_VD	JDA	×	
19	GND	Ground		
20	GND	Ground		

An Otava designed software GUI is provided to control the filter through the Seeeduino, which is preprogrammed. Once the connection is made between the Seeeduino and PC via the USB-C cable, launch the GUI (filter_control_gui_v0p1.exe).

The opening screen is shown below. Select the appropriate COM port from your PC to establish initial communication to the Seeeduino device:

CONTFO	rt Sele	ectio	n:	Fil	ter Sel	lecti	on:	
Select COM Port 👻		OTFL101 V						
pacitor Con	ionneo	et.		J	Di		nnect	
			C1-5:					
	C2:		C3:		C4:		C5:	
C1:			0		0	1	0	-
C1:			0		0	0	0	-

Figure 5 – GUI Opening Screen

Once the COM port is selected and the 'Connect' button is pressed, the 'Status' message on the bottom of the window will display the following message that the port is opened:

Figure 6 – GUI Establishing Communications

This software is utilized for the family of tunable filters that Otava currently has available (OTFL101, OTFL201, OTFL301). For this evaluation board design, the OTFL101 will be used under the Filter Selection drop down menu:

🧮 Otava Filter Control	- 🗆 X
Configuration COM Port Selection: COM9 ~ Connect	Filter Selection: OTFL101
Capacitor Control	
C1-5: 0 C1: C2: C3: 0 • 0 • 0	C4: C5: 0 ▼ 0 ▼
Status Serial port opened.	

Figure 7 – GUI Filter Selection

To control the capacitor banks of the filter, each of the five stages are broken out from C1 to C5. The C1-5 control will toggle all filter stages at the same time. The changes are automatically applied each time the values are updated. A status message will be displayed on the bottom of the window each time the values are changed:

Ctava Filter Control	- 🗆 X				
Configuration COM Port Selection: COM9 ~	Filter Selection:				
Connect	Disconnect				
Capacitor Control					
$\begin{array}{c} C1-5: \\ 1 & \bullet \\ C1: & C2: & C3: & C4: & C5: \\ 1 & \bullet & 1 & \bullet & 1 & \bullet \\ \end{array}$					
Status Wrote control word: 0x0010	8421				

Figure 8 – GUI Control Applied

If the user would want to utilize their own test control equipment, the jumpers can be removed, and the five required connections will become available to hook in external connections, as detailed in the below table (pins 4,8,14,16, and 18):

Table 3 – J10 Control Header (Bypassing Seeeduino)

Pin	ı/o	Description	
1	GND	Ground	
2	GND	Ground	
3	VDD_1	not used	
4	VDD_1	Connect external 1.8V	
5	GND	Ground	
6	GND	Ground	
7	VDD_2	not used	
8	VDD_2	Connect external 2.5V	
9	GND	Ground	
10	GND	Ground	
11	GND	Ground	
12	GND	Ground	
13	A1	Ground	
14	A1_VD	Connect external SLA	
15	A8	not used	
16	A8_VD	Connect external SCL	
17	A10	Ground	
18	A10_VD	Connect external SDA	
19	GND	Ground	
20	GND	Ground	

Additional Information

Figure 9 – OTFL101-EVAL Schematic (Filter – 1 of 2)

Figure 10 – OTFL101-EVAL Schematic (Control – 2 of 2)

Reference Designator	Qty	Description	Part Number	Vendor	
	1	Evaluation PCB	OTFL101-PCB	Otava	
IC1	1	Tunable Filter, 2.5 - 7.5 GHz	OTFL101	Otava	
U1	1	Microcontroller	Seeeduino Xiao	Seeed	
J1, J2, (J3-J8 not supplied)	2	Compression edgemount SMA RF Connector	TMB-E5F2-1L1	CarlisleIT	
J10	1	Header SMD 20 Pos 2.54mm	TSM-110-01-F-DV	Samtec	
R1, R3, R5, R7	4	Resistor SMD 1K OHM 1% 1/10W 0603	RC0603FR-071KL	Yageo	
R2, R4, R6, R8, R9	5	Resistor SMD 1.2K OHM 1% 1/10W 0603	RC0603FR-071K2L	Yageo	
R10	1	Resistor SMD 3.9K OHM 1% 1/10W 0603	RC0603FR-073K9	Yageo	
R12	1	Resistor SMD 0 OHM JUMPER 1/10W 0603	RC0603JR-070RL	Yageo	
C1, C2	2	Capacitor CER 0.1UF 100V X7R 0603	CC0603KRX7R0BB104	Yageo	
C3, C4	2	Capacitor CER 100PF 25V NPO 0603	CC0603JRNPO8BN101	Yageo	
J10-x	5	Shorting Jumpers for J10	SPC02SXCN-RC	Sullins	

Table 4 – Bill of Materials, OTFL101-EVAL

Figure 13 – OTFL101-EVAL Assembly Drawing (Top)

Figure 14 - OTFL101-EVAL Assembly Drawing (Bottom)